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Stress analysis of elastomeric materials at 
large extensions using the finite element 
method 
Part I Stress and strain distribution around spherica/ ho/es 

Y. FUKAHORI ,  W. SEKI 
Research and Development Division, Bridgestone Corporation, Kodaira-shi, Tokyo 18Z Japan 

The finite element analysis newly developed is applied to stress and strain analyses around 
spherical holes in elastomers from small to very large deformations. The stress and strain 
distributions computed based on the strain-energy function of real elastomers measured through 
strip-biaxial testing agree well with the classical theoretical ones at small strain. At large 
extension, however, the maximum stress concentration factor increases and the maximum strain 
concentration factor decreases as strain increases. These tendencies will be increased more in 
carbon black-filled elastomers than in unfilled ones. The successful description for these 
phenomena can be achieved by mainly considering the non-linear properties in the stress-strain 
relation of elastomers which increase as extension increases and carbon black content increases. 

1. I n t r o d u c t i o n  
The phenomenon of failure by catastrophic crack 
propagation in structural materials poses many prob- 
lems in design and analysis in fields of engineering. 
The driving needs for methods which quantify the 
effects of the presence of stress raisers on material 
performance have led to the evolution and develop- 
ment of the fracture theories. Stress raisers such as 
cavity, crack and rigid spheres are present to some 
degree in all structures. They may exist as basic defects 
in the constituent materials or they may be induced in 
construction or during service life. Therefore, it is 
a fundamental requirement in fracture theories, par- 
ticularly in the fracture mechanics theory, to quantify 
the effects of stress raisers on material performances 
based on accurate knowledge of the stress field in the 
vicinity of the stress raiser for structural geometry and 
loading and boundary conditions in question. Many 
systematic stress analyses ha~e been carried out theor- 
etically, experimentally and numerically in metals and 
plastics, whose data, as is well known, have played 
quite important roles for structural design and frac- 
ture analysis of these materials. 

Unfortunately, however, in elastomeric materials it 
seems to be rarely the case for stress anslysis to be 
performed, except for a few experimental results re- 
ported by Thomas [1], Andrews [2], Knauss [3], 
Fukahori [4] and Andrews and Fukahori [5]. They 
all showed that the stress concentration around an 
edge crack along the crack axis is roughly expressible 
in a form which is similar to that derived from classical 
elasticity theory even when a rubber sheet containing 
the crack is largely extended. However, these experi- 
ments give only a rough solution for selected, rel- 

atively simple cases in geometries and loading condi- 
tions and of course, do not give any general and 
accurate solution for stress analysis of elastomeric 
materials undergoing large deformation. 

One of the most serious reasons why stress analysis 
has not been widely carried out for elastomeric mater- 
ials seems to be attributable to the fact that elastomer 
study remains terribly backward in numerical tech- 
niques such as finite element and boundary integral 
methods. As is well known, because a finite element 
method (FEM) is based originally on classical or 
small strain, linear elasticity theory, there exist several 
difficulties which have to be overcome for the applica- 
tion of FEM to elastomers, concerning non-linear 
stress-strain relations and incompressible behaviour 
of the elastomer, in addition to its tremendous amount 
of deformation (over several hundred per cent tO fail- 
ure). 

It was Rivlin [6] who developed a mathematical 
theory of elasticity based on the strain-energy function 
for large deformation behaviour of non-linear rubber- 
like materials, which made possible a finite element 
analysis in elastomers under large deformation. The 
first trial was performed by Lindley [7, 8], in which he 
analysed the stress concentration around a circular 
hole in a stretched rubber sheet (plane stress condi- 
tion). Although his numerical treatment could manage 
the stress analysis of rubber at moderately large defor- 
mation, there were some problems in the strain-energy 
function he used, which is based on the Gent-Thomas 
equation (see Section 2.2). 

After detailed experiments of Kawabata et al. [9] 
and Fukahori and Seki [10], concerning the strain- 
energy function of elastomers, Fukahori and co- 
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workers [11, 12] established a quantitative numerical 
method, a large deformation finite element method, by 
comparing in detail their experiments and numerical 
results for largely deformed rubber and rubber prod- 
ucts in one-, two- and three-dimensional conditions, 
which showed a very good agreement between experi- 
ments and computations. The employed the strain- 
energy functions of elastomers obtained experi- 
mentally with a newly developed strip-biaxial machine 
and combined these data with the computer program. 
There is little published information on stress analysis 
in elastomers, in particular those evaluated with 
a finite element analysis, except for only a few cases as 
described earlier. 

In this report the numerical method [11, 12] is 
applied to stress and strain analyses around a spheri- 
cal hole (cavity) in elastomers from small to very large 
deformation near their fracture and quantitative and 
systematic answers are given to the following ques- 
tions compared with classical elasticity solutions. 

1. Do the numerical results performed at large ex- 
tension agree with the classical solution in the stress 
and strain distribution around a spherical cavity? 

2. If there is no agreement between them, how do 
the stress and strain distributions vary with the strain 
amplitude? 

3. What is the point of characterizing the stress and 
strain distribution under large deformation in elasto- 
mers? 

2. Theoretical background 
2.1. Stress concent ra t ion  around a 

spherical hole 
According to the classical elasticity theory [13, 14], 
the stresses around a spherical hole represented in 
terms of the polar coordinate system (Fig. 1) are given 

% 

by the following equations when the system is sub- 
jected to a uniform stress, oo, in the z direction at 
r =  o o ;  
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+ 1 -  2v r 3 + 36 cos20 

+ OoCOS2 0 (1) 
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where the values of A, B and C are constants and are 
given by 
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and ro is the radius of a spherical hole, E is Young's 
modulus and v is Poisson's ratio of the material. The 
corresponding strains are also given by 

VCY jj ~ii ~ (6) 
~ii - E i,~j E 
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Figure 1 The p o l a r  c o o r d i n a t e  sys tem.  
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2.2. St ra in-energy func t ion  
Stress-strain relations of homogeneous, isotropic and 
elastic materials can be derived from the strain-energy 
function, W, the elastic energy stored in a deformed 
body. According to Rivlin [6J, the strain-energy func- 
tion, W, is given as a function of strain invariants I1, 

I2 and I3 

W = W(I1, I2, I3) (8) 

= LI~. 2 -I'- ~2~.3 "1- X3~l, where 11 L 2 + X 2 + L 2, I2 = 2 2 2 2 2 2 
'),2'),2 3,2 and X1, L2 and X3 are the principal exten- I 3  = ~ 1 , 4 2  '~3 

sion ratios. In general, I3 = 1 because of the incom- 
pressibility of rubber. 



In a homogeneous biaxial deformation, the princi- 
pal stress (engineering stress) o~ and % are derived 
from W [15], 

2 Zz 1 2~ 2 2 812 J ol  = ~ ~x)'2 b571 + 

= ~ + 1 5 1 2 ]  

Then 5 PV/SI 1 and 8 W/8I  2 can be calculated by substi- 
tuting the data sets of 01, o2, and the corresponding 
)vl, )v2 obtained through biaxial experiments into the 
following equations derived from Equations 9 and 10 

a w  1_ ( x~01 
511 - 2(z 2 )v2) k x2 -- ]v12~'22 

5W _ 1 ~ )vl ol 
aI2 204-  z2) k ~  _-~;-~),;2 

) 
(11) 

X2 o2 ) 

In the case of uniaxial extension, considering 
~2 = )Vl 1/2 

= + (13) 

In Equation 13, a neo-Hookean material which gives 
a linear rubber elasticity is a special case when 5 W/OIl 
is constant and 5W/~I2 = 0. On the other hand, the 
Mooney material corresponds to the case where both 
of 5W/5II and 5W/512 are constant, which is the 
simplest description for a non-linear elastomeric ma- 
terial. 

Because Equation 13 also includes two unknown 
parameters, 5 W/5II and 5 W/512, it is fundamentally 
impossible to decide these two parameters with 
a single equation, in other words with a simple exten- 
sion test. As Kawabata et al. [9] and Fukahori and 
co-workers [10, 12] showed experimentally, 8W/811 
and 5W/512 are not constant but are complicated 
functions of 11 and I2 and thus )v 1 and )~2. Therefore 
the treatments proposed by Rivlin and Saunders [16] 
the so-called Mooney-Rivlin and Gent-Thomas [17] 
plots, both of which assume two constants as a pre- 
mise for 5W/Six and ~W/512 given by a simple exten- 
sion test, are not valid for representing the general 
form of the strain-energy function [10]. That is, the 
strain-energy function obtained through a simple ex- 
tension test is valid only for the stress-strain behavi- 
our in simple extension. 

2.3. Finite element method 
The incompressible condition is important for a finite 
element analysis of rubber-like materials. The present 
work is based on the Lagrange multiplier method for 
incompressible constraint proposed by Oden [18], 
where the strain-energy function, W, is replaced by 

P 
lg" = W(ll, 12) + ~(I3 - 1) (14) 

where P is the Lagrange multiplier of the constraint, 

which is a hydrostatic pressure independently derived 
from the displacement field and directly related to the 
bulk modulus. Then, a constitutive equation for in- 
compressible rubber can be written as a relation be- 

(9) tween the second Piola Kirchhoff stress tensor Sij, the 
Green-Lagrange strain and deformation tensor E o- 
and C~j and hydrostatic pressure, P 

(10) 
5W _ 2[51~_ 5W5I~ 

Si j -- ~Eij ~ 1  6ij -1- 

x ( I l a i j - C q )  1 + P(Cu) -1 (15) 

Now consider the total energy function n(u, P) 
given by Equation 16 

rc(u,P) = ~ff /dv-  F(u) (16) 

where F(u) is a potential energy of external force and 
v is a volume of the undeformed configuration. Ac- 
cording to the principle of the virtual work, the func- 

(12) tion ~ has a minimum value in its equilibrium condi- 
tion. Thus, we can obtain the formulation, the so- 
called mixed or hybrid method for the incompressibil- 
ity problem, which is a generalization of Hermann's 
variational principle. The computer program pre- 
dominantly used in this report is MARC, with subrou- 
tines modified where necessary. 

3. Experiments and numerical  
t reatments  

3.1. Apparatus and materials 
A summary of the new apparatus to perform strip- 
biaxial (pure shear) testing which was introduced in 
detail elsewhere [10], as shown in Fig. 2, is now given. 
The rectangular test piece can be extended freely in the 
x-direction, while in the y-direction, the test piece is 
kept constant 0~2 = 1) gripped in sliding clamps. Thus, 
data from % and o2 measured by paired load cells 
connected to fixed crossheads make calculations of 
8 W/5I  1 and 5 W/812 from Equations 11 and 12 pos- 
sible. In this research, we used the following types of 
empirical equation for 5 W/SI  1 and 5 W/512 by a least- 
squares method 

8W 
ai + bi(li - 3) + ci(li - 3) 2 

+ di exp[ei(l, - 3)3 (17) 

The materials used here were unfilled (NR1), slight- 
ly filled (NR2) and heavily filled (NR3) natural rubber 
vulcanizates with carbon black. The relevant com- 
pounding recipes are given in Table I. NR2 was most- 
ly used for computation, unless noted otherwise. 

3.2. Stress-strain relations 
Stress-strain curves in simple extension for three rub- 
ber vulcanizates are shown in Fig. 3, while the values 
of 8W/511 and 8W/~12 obtained in a strip-biaxial 
testing are plotted against strain in Fig. 4. As indicated 
earlier, 5 W/511 and ~ W/SI  2 are not constant but have 
typical features varying with Ix and strain. More or 
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Figure 3 Stress-strain relations in simple extensmn. 
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Figure 2 The strip-biaxial testing machine. 

TAB L E I Compounding details of the materials (parts by weight) 

Composition NR1 NR2 NR3 

Rubber 100 
(NR) 

Carbon black 0 25 60 
(FT) (HAF) 

Sulphur 0.7 1.5 2.0 

In addition, zinc oxide (5.0) and steric acid (2.0) for all rubbers and 
aromatic oil (9.0) for NR2 only. 

less, all rubber vulcanizates, of any rubber species and 
whether filled or unfilled have similar features [10] to 
Fig. 4. 

3.3. The numer ica l  mode l  
Spherical inclusions randomly distributed in an in- 
finite matrix can be represented by a cylinder of 
matrix containing a single sphere of a radius ro at its 
centre, its radius Ro and the height 2Ro, in a finite 
element analysis, as shown in Fig. 5. The cylinder can 
be predicted by the plane ABCDEF using axisymmet- 
ric elements, the z-axis being the axis of symmetry. The 
boundary conditions which must be satisfied in the 
calculation are as follows (shown in Fig. 6). 

1. The stresses do not work on the boundary of the 
sphere, Orr = Or e = 0, which means that the sphere 
can deform freely at its interface; 

2. no constraint is imposed on the side surface of 
the cylinder, i.e. free deformation and no external 
force; 
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Figure 4 ~W/~I1 as a function of strain. 
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3. the circular surface of the cylinder is constrained 
to remain perpendicular to the z-axis, but freely de- 
formable in the x-direction. 

The deformation of the grid is achieved by loading 
the grid (a uniform stress, Oo) by prescribed displace- 
ment in the z-direction. 

The volume fraction, V, of spheres which occupy the 
system can be calculated by the relation, v = 2/3 
(ro/Ro) 3. An increase in the value of the geometrical 
parameter ro/Ro is equivalent to the holes being close 
together. In the present computation, the radius of the 
phere, ro, was kept constant, while that of the cylinder 
was varied, the relation between the geometric para- 
meter, ro/Ro, and volume fraction, v, being as given in 



Z 
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X 

Figure5 A cylinder of matrix containing a single sphere at its 
centre. 

Table II. Fig. 7 represents the typical finite element 
model for the computation, in which only a quarter of 
the map is shown. 

The computation gives the maximum principal 
stress (true stress), ~, and the maximum principal 
strain, e. Uniform (average) stress applied to the sys- 
tem, ~o is calculated from the sum of force applied to 
the circular surface of the cylinder divided by its sur- 
face area. All stress and strain fields are represented by 
the stress concentration factor a( = ~/~o) and strain 
concentration factor 13(= e/ao) and the maximum 
stress and strain concentration factors, ~,,ax and 13 . . . .  
respectively. 

4. Results 
4.1. Stress and strain d is t r ibut ion around 

a spherical hole subjected to uniaxial 
tensile stress 

Figs 8 and 9 give contour maps of stress concentration 
factor, cz, and strain concentration factor, 13, around 
a spherical hole represented on the undeformed 
coordinates computed at small average strain 
(eo = 10%) and ro/Ro = 1/12, in whose condition the 
disturbance for stress and strain distribution around 
a hole by adjacent holes can be neglected. Fig. 8 shows 
the distribution of cz at any point around a hole. The 
maximum concentration appears along the x-axis at 
r = ro, the boundary of the hole and its absolute value 
is 2.12, which is slightly smaller than the theoretical 
value, ~m,x = 2.16. The maximum strain concentra- 
tion occurs at the same position that ~max appears and 
its value is 1.88, which is also slightly smaller than the 
theoretical value, 13m,x = 1.92. These small disagree- 

D E 

Figure 6 The plane ABCDEF given in Fig. 5 using axisymmetric 
elements, the z-axis being the axis of symmetry. 

TABLE II Relation between the geometric parameter, ro/Ro, and 
volume fraction, v 

ro/Rn v (%) 

1/12 3.85 x 10 -2 
1/5 5.33x 10 1 
1/2 8.33 
1/1.5 1.98 x 10 
1/1.2 3.85 x I0 

ments between the computat ion and theory come 
from making a coarse mesh in computation and are 
not essential discrepancies. Anyway it is clearly seen 
that the stress and strain distribution and their abso- 
lute values around a spherical hole computed based 
on the strain-energy function obtained empirically at 
small strain agree well with ones theoretically cal- 
culated using the classical elasticity solution, Equa- 
tions 1-5, and Equations 6 and 7 when v = 0.5. 

On the other hand, at very large deformation, how- 
ever, the computed contour maps give different fea- 
tures. Figs 10 and 11 are contour maps of ~ and 13, 
respectively, computed at very large average strain 
(ao = 300%) and ro/Ro = 1/12. The maximum concen- 
tration factor, ~ . . . .  becomes considerably larger than 
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Figure 7 Finite element grid with axisymmetric elements. 
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Figure 9 As Fig. 8, but of strain concentration factor, 13. 

0.58 \0.80 

1.02 

1.24 

1,68 
1,90 
2.12 

Figure8 Contour maps of stress concentration factor, ~, around 
a spherical hole represented on the undeformed coordinates at 
~o = 10% and ro/Ro = 1/12. 

0.43 "k L70 

1.23 

Figure 10 As Fig. 8, but at % = 300% and ro/Ro = 1/12. 

the calculated one, that  is cz~,a, = 2.58, as shown in 
Fig. 10. On  the contrary,  [3ma, is much smaller than 
the calculated one, i.e. [3m,x = 1.40 (Fig. 11). 

These situations are unders tood more  clearly by 
plotting ~ and 13 against the distance from the surface 
of the cavity along the x-axis. The distribution of ~ is 
plotted as a function of r/ro at various average strains 
along the x-axis in Fig. 12. When  an average strain is 
less than I0%,  the cz-r/ro curve completely makes 
a good fitting with the theoretical one. However,  as an 
average strain increases, the ~-r/ro curve shows the 
rapid increase of ~ at a small distance r, which pro- 
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duces the higher value of ~max at the boundary  of 
a hole. However,  in the case of the distribution of 13, 
the situation will be reversed, except the case that the 
[3 r/rocurve at small average strain (~o = 10%) also 
makes a good  fitting with the theoretical curve. That  
is, in the 13-r/ro curve, the upturn of 13 at a small 
distance from the boundary  of a hole will diminish and 
as a result [3ma, decreases rapidly with increasing aver- 
age strain, as shown in Fig. 13. Therefore, we can 
conclude that stress and strain distribution around 
a spherical hole deviate from those given by the theor- 
etical solution as average strain increases, which re- 
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Figure 13 Strain concentration factor as a function ofr/ro along the 
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Figure 14 Contour maps of ~ around a spherical hole disturbed by 
adjacent holes, at ~o = 10% and ro/Ro = 2/3. 

r l r o  

Figure 12 Stress concentration factor as a function of r/ro along the 
x-axis, to: (-----) 300%, (------) 100%, ( ) 10%, (- -) 
theoretical. 

suits in a larger value in ~max and a smaller value in 
[3ma, with increasing average strain compared with 
classical theory. 

4.2. Influence of adjacent holes on stress 
and strain distr ibution around 
a spherical hole 

The distribution of c~ and 13 around a spherical hole 
are significantly disturbed by the presence of adjacent 
holes. Figs 14 and 15 are contour maps of cz and [3 at 
small average strain (~o = 10%) when other adjacent 
holes are close to the hole, i.e. the geometrical para- 
meter ro/Ro = 2/3. The characteristic high value of 
C~max is seen in Fig. 14, whereas 13max does not change 
much, as shown in Fig. 15. These situations are clearly Figure 15 As in Fig. 14, but of ~. 
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Figure 16 O~ma x as a function of ro/Ro. ~o: (Q) 300%, ( 0 )  10%. 

illustrated in Figs 16 and 17. Fig. 16 is the relation 
between ~max and ro/Ro and indicates that ~ .... in- 
creases gradually in a region of the small value of ro/Ro 
but increases greatly when the value of ro/Ro exceeds 
around 0.5 as ro/Ro increases. However, on the other 
hand, [3max is not influenced so much by the presence 
of adjacent holes, as shown Fig. 17. Anyway, it is 
shown that in any cases of different values of ro/Ro, 
~max at large extension is always larger than that at 
small extension and [3max at large extension is always 
smaller than that at small extension. 

5 .  D i s c u s s i o n  
Now we consider the reason why ~max increases and 
[3max decreases in elastomeric materials as the average 
uniform strain increases. Needless to say, the classical 
theoretical solution is given under the assumption of 
linear elasticity and infinitesimal strain. Therefore, 
when we treat the problems of large deformation in 
elastomeric material, we must take geometric and 
material non-linearity into consideration, in which 
both effects may generally be combined together. For 
the question of non-linearities arising from geometry 
of structures, Yang [19] gave a good clue to consider 
the large deformation of rubbers. In his theoretical 
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Figure 17 ~max as a function of ro/Ro, ao: (O) 300%, (O) 10%. 

treatment, he calculated the stress and strain concen- 
tration factors under moderately large deformation 
for a circular rubber sheet with a centred circular hole 
and rigid circular inclusion, the plane-stress assump- 
tion being considered, using the strain-energy function 
of the so-called Mooney-type material. Although the 
Mooney material is different from a neo-Hookean 
material, we may virtually ignore the difference in 
both materials, as long as a strain is not so large, less 
than 100%, for instance. The results thus calculated 
show that for a circular hole, the maximum stress 
concentration factor increases greatly and the max- 
imum strain concentration factor increases slightly as 
an average strain increases, due to the effect of large 
change in geometry. 

Now we consider our numerical results for real 
elastomeric materials compared with the calculated 
results for the Mooney material [19]. Fig. 18 gives 
~max computed as a function of average strain, eo, at 
ro/Ro = 1/12 for three rubber vulcanizates, NR1 (un- 
filled), NR2 (slightly filled) and NR3 (heavily filled). As 
mentioned earlier, the characteristic stress-strain rela- 
tion and relation between ~W/~I1 and X1 in elasto- 
meric materials strongly depend on filler contents, the 
more filled, the more non-linear the relations, as 
shown in Figs 3 and 4. That is, the stress gradually 
deviates from the linear stress-strain relation as strain 
increases. In Fig. 18, it is shown that values of ~max for 
three elastomeric materials increase with increasing 
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Figure 18 ~max as a function of strain for various rubber vulcan- 
izates: (O) NRI, (~) NR2, (O) NR3. 

strain amplitude, and the more filled, the more in- 
creased is ~max. Considering that even an unfilled 
rubber shows material non-linearity to some extent, as 
shown in Figs 3 and 4, both geometric and material 
non-linearity obviously play an important  role in the 
deviation of etm,x given by numerical analysis at large 
extension from the classical (infinitesimal strain) the- 
oretical solution. We can say, however, that a more 
important contribution to the discrepancy may be 
attributable to the material non-linearity in elasto- 
mers. 

This is shown more clearly in the case of f3max for 
three rubber vulcanizates, as plotted against average 
strain in Fig. 19. Although [3m,x increases slightly as 
the average strain increases in the Mooney material 
[ 1 9 ] ,  ~3ma x computed for rubber vulcanizate in Fig. 19 
decreases with increasing average strain and the more 
filled, the more decreased is its value. Therefore, con- 
sidering that the increase of ~max c a n n o t  be interpreted 
with the geometric non-linearity, we can conclude that 
the main contribution of the increase in ~max and the 
decrease in [~max around a spherical hole in elastomers 
under large extension, results from the non-linear 
properties of the materials which increase as extension 
increases. 

Now let us consider the relation between the mater- 
ial non-linearity and the facts that 0~ma x increases and 
[~max decreases as the average strain increases in elasto- 
meric materials. In non-linear elastomeric materials, 

2.5 

E 

c~ 

2.0 

1.5 

1.0 

D 

I I I 
0 100 200 300 400 

Average strain (%) 

Figure 19 13m,x as a function of strain. (O) NR1, (()) NR2, (O) NR3. 

t ]  

t 
Figure 20 Schematic illustration of a hole surrounded by layers of 
different stiffness, KA and K~, K A > K B. 
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the stress increases by gradually deviating from the 
linear stress-strain relation with increasing strain, as 
shown in Figs 3 and 4, which means that the elasto- 
mer changes its stiffness from low to high as strain 
increases. Therefore, we can understand that under 
large extension, the elastomer component which sur- 
rounds a hole gradually increases the stiffness as it 
approaches the boundary of the hole. In other words, 
the system which surrounds a hole can be regarded as 
being constructed by components of different stiffness 
when it is highly strained. Fig. 20 gives the schematic 
illustration of such a situation where a hole is sur- 
rounded by layers of different stiffness, KA and KB, 
K a > K B .  N o w  w e  adopt parallel and series models 
consisting of two springs, A and B, whose stiffness is 
K A and KB, respectively. Under uniform deformation, 
the stress of spring A is larger than that of spring B in 
the parallel model and the strain of spring A is smaller 
than that of spring B in the series model. Virtually, 
these situations must be seen in real elastomeric ma- 
terials, which are well represented by the combination 
of two models. As a result, in non-linear materials like 
elastomer, the stress level of the stress-hardened com- 
ponent will be higher and its strain level will be lower 
than those of the component in linear materials when 
both materials are subjected to the same uniaxial load 
or extension. These tendencies should be more 
marked in carbon black-filled elastomers. 

6. Conclusion 
The maximum stress and strain concentration factors 
around a spherical hole computed using the empirical 
strain-energy function of elastomers agree well with 
the theoretical values at small average strain. At large 
extension, however, ~m,x increases and 13m,x decreases 
as the average strain increases. These tendencies will 
be increased more in carbon black-filled NR than in 
unfilled NR. These phenomena can be understood by 
mainly considering the non-linear properties in the 

stress-strain relation of elastomers which increase as 
extension increases and carbon black content in- 
c r e a s e s .  
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